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Abstract This paper introduces Prec-DWARF (Precipitation Downscaling With Adaptable Random For-
ests), a novel machine-learning based method for statistical downscaling of precipitation. Prec-DWARF sets
up a nonlinear relationship between precipitation at fine resolution and covariates at coarse/fine resolution,
based on the advanced binary tree method known as Random Forests (RF). In addition to a single RF, we
also consider a more advanced implementation based on two independent RFs which yield better results
for extreme precipitation. Hourly gauge-radar precipitation data at 0.1258 from NLDAS-2 are used to con-
duct synthetic experiments with different spatial resolutions (0.258, 0.58, and 18). Quantitative evaluation of
these experiments demonstrates that Prec-DWARF consistently outperforms the baseline (i.e., bilinear inter-
polation in this case) and can reasonably reproduce the spatial and temporal patterns, occurrence and dis-
tribution of observed precipitation fields. However, Prec-DWARF with a single RF significantly
underestimates precipitation extremes and often cannot correctly recover the fine-scale spatial structure,
especially for the 18 experiments. Prec-DWARF with a double RF exhibits improvement in the simulation of
extreme precipitation as well as its spatial and temporal structures, but variogram analyses show that the
spatial and temporal variability of the downscaled fields are still strongly underestimated. Covariate impor-
tance analysis shows that the most important predictors for the downscaling are the coarse-scale precipita-
tion values over adjacent grid cells as well as the distance to the closest dry grid cell (i.e., the dry drift). The
encouraging results demonstrate the potential of Prec-DWARF and machine-learning based techniques in
general for the statistical downscaling of precipitation.

1. Introduction

Understanding how climate variability and change impact and feedback with ecosystems and human activi-
ties is of great importance for natural hazards mitigation and risk management. The use of general circula-
tion models (GCMs) facilitates our understanding of large-scale climate evolution and land surface-
atmosphere interactions but the scale mismatch between coarse resolution GCMs and catchment hydrolog-
ical processes increases the uncertainty of hydrological modeling [Carter et al., 1994; Hostetler, 1994; Fowler
and Wilby, 2007]. One possible way to address this issue is to spatially downscale coarse rainfall estimates.
High-resolution products generated from coarse-scale precipitation fields (climate models, reanalysis, or sat-
ellite products) are more useful and appropriate for local impact assessments across different sectors. For
instance, they can help stakeholders identify risk hotspots of natural hazards (rainfall triggered shallow land-
slides, flash floods, soil erosion, etc.) [Hong et al., 2007; He et al., 2016; Zhang et al., 2004] and water-related
pollution or water-borne disease [Singh et al., 2015]. Precipitation downscaling also acts as an underpinning
to investigate subgrid-scale parameterization [Yano, 2010], uncertainty propagation [Bastola and Misra,
2014], hyperresolution modeling [Wood et al., 2011], and seasonal forecast [Sheffield et al., 2014].

Despite the potential benefits of spatial downscaling of precipitation, its implementation is generally diffi-
cult and cumbersome due to the complex characteristics of precipitation (e.g., highly skewed, non-Gaussian
distribution, intermittent and complex spatial-temporal structure). Techniques aimed to tackle this can be
distinguished as dynamical or statistical downscaling approaches, and both have advantages and disadvan-
tages. Dynamical downscaling relies on a regional climate or numerical weather model to provide high-
resolution precipitation and other surface climate variables by simulating the physical processes of the cou-
pled land-atmosphere system, at the expense of often large computational resources [Rummukainen, 2010].

Key Points:
� A new machine-learning based

algorithm (Prec-DWARF) for spatial
precipitation downscaling using
random forests (RF) is proposed
� Synthetic experiments are used to

examine the performance of Prec-
DWARF over different climatic
regions in the United States
� Prec-DWARF with a double RF better

reproduces observed precipitation
structures and distributions

Correspondence to:
X. He,
hexg@princeton.edu

Citation:
He, X., N. W. Chaney, M. Schleiss, and
J. Sheffield (2016), Spatial downscaling
of precipitation using adaptable
random forests, Water Resour. Res., 52,
8217–8237, doi:10.1002/
2016WR019034.

Received 5 APR 2016

Accepted 28 SEP 2016

Accepted article online 3 OCT 2016

Published online 27 OCT 2016

VC 2016. The Authors.

This is an open access article under the

terms of the Creative Commons Attri-

bution-NonCommercial-NoDerivs

License, which permits use and distri-

bution in any medium, provided the

original work is properly cited, the use

is non-commercial and no modifica-

tions or adaptations are made.

HE ET AL. SPATIAL PRECIPITATION DOWNSCALING 8217

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2016WR019034
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


In contrast, statistical downscaling methods aim to model the statistical relationships between small and
large-scale covariates. They form an attractive alternative to dynamical downscaling methods due to their
simplicity and low computational costs. Compared to their purely deterministic counterparts, stochastic
models also allow for a clearer and more comprehensive interpretation of the predictable and random parts
in a complex system, including crucial information about model uncertainty and probability of extremes
[Koutsoyiannis, 2010; Maraun et al., 2010].

The main challenge of statistical downscaling is to make sure that the mean and temporal dependence of
the downscaled process are consistent with the coarse-scale observations. When downscaling is performed
at multiple sites, the spatial dependence also has to be modeled with suitable methods. In the case of pre-
cipitation, this can be achieved through the use of conceptual/physical models like random cascades [e.g.,
Lovejoy and Mandelbrot, 1985; Lovejoy et al., 1987; Menabde et al., 1997], weather typing [Vrac and Naveau,
2007], filtered autoregressive Gaussian processes [e.g., Rebora et al., 2006; Schleiss and Berne, 2012; Jha et al.,
2015], or Poisson cluster models [e.g., Hershenhorn and Woolhiser, 1987; Rodr�ıguez-Iturbe et al., 1987, 1988;
Cox and Isham, 1988; Onof and Wheater, 1993; Cowpertwait, 1995; Onof et al., 2000; Pegram and Clothier,
2001]. Alternative purely statistical approaches in which physical/conceptual ideas only play a minor role
have also been proposed. Examples include multiple linear regression (MLR) [Jeong et al., 2012], multivariate
adaptive regression splines [Beuchat et al., 2011], QQ transforms [B�ardossy and Pegram, 2011], and machine
learning.

Machine learning, also known as data mining or predictive analytics, is a very general and increasingly pop-
ular way to automatically extract information without the need to construct explicit physical or statistical
models (e.g., neural networks) [Olsson et al., 2001; Coulibaly et al., 2005]. Compared to conventional
approaches, machine-learning based methods are also easier to generalize beyond the training data sam-
ples [Domingos, 2012]. The growing popularity of machine learning stemmed from an explosion of big data,
which has been regarded as the main driver of the next stage of innovation [Manyika et al., 2011]. In the
hydrological sciences, sources of big data are from traditional gauge networks, large-scale simulations from
GCMs or regional climate models, satellite and radar retrievals, paleoclimate proxies, and reanalysis prod-
ucts. At the same time, the strength of machine-learning algorithms draws from their ability to tackle differ-
ent types of problems, from classification to prediction and parameter selection. In addition, increases in
computer power (memory, storage capacity, and advanced parallel techniques), have made it feasible to
use high performance computing (supercomputers) to combine knowledge (machine-learning based algo-
rithms) with big data to develop automated algorithms for a variety of applications. This is particularly
appropriate for precipitation downscaling, for which there is increasing demand for data at kilometer or fin-
er spatial scales, such as for hyperresolution hydrological modeling [Wood et al., 2011; Chaney et al., 2016a].

Among the range of machine-learning algorithms, Random Forests (RF) [Breiman, 2001] stands out for its
ability to deal with complex nonlinear relationships between variables while minimizing problems with
overfitting. Due to its simplicity and capabilities, RF has been used in a wide range of hydrological-related
applications, for example, high-resolution soil type classification over the contiguous United States [Chaney
et al., 2016b], seasonal streamflow forecasting [Zhao et al., 2012; He et al., 2013], natural flow regime alterna-
tion [Carlisle et al., 2010], vegetation-type distribution [Peters et al., 2007], temperature [Eccel et al., 2007],
and wind [Davy et al., 2010] downscaling, and satellite rainfall estimation from cloud physical properties
[K€uhnlein et al., 2014]. RF also has great potential for statistical precipitation downscaling although there are
few studies that have addressed this issue. Shi and Song [2015] applied RF to downscale monthly TRMM
precipitation by constructing a nonparametric relationship between precipitation and six covariates, includ-
ing enhanced vegetation index, altitude, slope, aspect, latitude, and longitude. Ibarra-Berastegi et al. [2011]
combined an analogue method and RF to downscale precipitation from reanalysis data sets. However, these
methods did not consider the temporal and spatial dependence in their downscaling frameworks. Overall,
the potential of RF and machine-learning techniques for statistical downscaling of precipitation has not
been studied to its full extent and there appears to be much room left for further improvement.

In this paper, we present the development of a RF-based precipitation downscaling method called Prec-
DWARF (Precipitation Downscaling With Adaptable Random Forests) and demonstrate its use over the con-
tinental U.S. The method is adaptable because it can be applied in a variety of situations, to downscale data
from models, remote sensing retrievals, or gridded observations at different resolutions. It can also be
adapted to include any type of covariate (e.g., discrete or continuous) and can be adjusted to different types
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of precipitation (e.g., stratiform, convective, and orographic). To our knowledge, this is the first time that RF
is applied to downscale precipitation to high-resolution while taking into account the spatial and temporal
dependence of the precipitation process. The structure of this paper is organized as follows: Section 2 intro-
duces the data and study area. A comprehensive step-by-step description of the algorithm as well as the
experimental design is presented in section 3. Case studies and results are given in section 4. A discussion
and summary is provided in section 5.

2. Data and Study Regions

The North-American Land Data Assimilation System Project Phase 2 (NLDAS-2) [Xia et al., 2012] products are
used in this study as the observational data and covariates for the RF. The spatial resolution of the data is
0.1258 and the temporal resolution is hourly. Hourly precipitation data in NLDAS-2 are derived by temporally
disaggregating daily rain gauge data based on hourly radar data, CMORPH products [Joyce et al., 2004], and
CPC hourly CONUS/Mexico gauge data [Higgins et al., 1996], which are used to derive the hourly disaggrega-
tion weights and do not change the daily precipitation in total [Cosgrove et al., 2003]. Data for other near
surface climate variables in the NLDAS-2 (e.g., temperature, wind speed, humidity, pressure) and surface
short and longwave radiation are derived from the North American Regional Reanalysis (NARR) through the
spatial interpolation, temporal disaggregation, and vertical adjustment. Topography-related covariates are
derived from GTOPO30 Global 30 Arc Second (�1 km) and regridded to 0.1258. Soil covariates in NLDAS-2
are reaggregated from the 1 km STATSGO data and only the most dominant soil texture class is selected.
The first most predominant vegetation type from the University of Maryland’s land cover classification prod-
ucts is chosen as the static vegetation covariate. As the purpose of this paper is to develop and verify the
proposed algorithm rather than producing a complete data product, we only process the hourly data in the
summer time (June, July, and August) of 2011 focusing on four climate divisions: Southwestern United
States (SWUS), Central United States (CUS), Northeastern United States (NEUS), and Southeast United States
(SEUS).

3. Methodology

In this section, we describe the algorithm for Prec-DWARF and the development of synthetic experiments
to evaluate the algorithm.

3.1. Statistical Model and Physical Covariates
The basic idea of the downscaling algorithm is to set up a transfer function between the response and cova-
riates using the following equations:

Pd5f ðvÞ1error (1)

v5ðc1; c2; . . . ; cNÞ 2 RN (2)

where Pd is the downscaled precipitation (response) at high-resolution, v is a multidimensional feature
response vector, ci represents the individual covariate (e.g., temperature), and N is the dimension of the
input feature space (N 5 21 in this study). f can be either a linear or nonlinear function depending on what
assumptions are made. In machine learning, f indicates a black box model and may not have a specific
form. One of the fundamental issues of machine learning is how to select the most informative covariates.
In this study, precipitation at coarse spatial resolution is used as the main driver for downscaling. Physical
predictors including atmospheric covariates and geographical covariates are also utilized. Atmospheric
covariates (including coarse resolution precipitation) are included to maintain the temporal dynamics of the
downscaled rainfall. Topographic data are included to maintain orographic effects [Roe, 2005] and better
reproduce the spatial pattern of the downscaled precipitation. Auxiliary covariates at fine resolution, such
as soil texture, vegetation type, are also included to take account for land-atmosphere coupling and its
impact on the formation of precipitation [Zhan et al., 2015]. Latitude, longitude as well as the day of year
(DOY) index are also used as covariates as they contain geographical and seasonality information.

As mentioned before, one of the main challenges in precipitation downscaling is to correctly reproduce its
spatial structure. To ensure a realistic transition between dry grid cells and rainy grid cells as well as a better
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distribution of rainfall rates inside the rainy regions, we adopt the ‘‘dry drift’’ formalism proposed by Schleiss
et al. [2014]. Specifically, we incorporate an additional covariate into the downscaling scheme, which is the
distance from any rainy pixel to the closest surrounding dry grid cell (in space). The distance to the closest
dry pixel can be calculated efficiently using a binary search tree (e.g., the K-dimensional tree algorithm). Our
results show that the inclusion of the dry drift leads to a more realistic spatial distribution of rain rates with-
in the rainy grid cells. To avoid the so-called ‘‘border effect’’ [Schleiss et al., 2014], we first calculate the dis-
tance to the dry grid cells for the entire CONUS before subsetting it to the four considered regions.

3.2. Random Forests
Although the aforementioned regression-based method described by equations (1) and (2) is relatively easy
to implement and does not require a substantial amount of computational resources, one disadvantage of
regression-based methods is that they generally provide a single estimate and not a full probability density
function (PDF). Sampling a full PDF has the advantage of providing an uncertainty analysis to evaluate the
system performance (i.e., employ probabilistic descriptions of the model output using the confidence inter-
val). A way to overcome this issue is to use ensemble learning, which aggregates results from multiple mod-
els in order to achieve better performance (greater accuracy and generalization) and reduce the chances of
overfitting, whilst quantifying the uncertainty associated with a given estimate/prediction. Moreover,
ensemble-based learning methods are relatively easy to train and test in a parallel computing environment.
Among the ensemble learning methods, bootstrap [Efron, 1979] aggregating (bagging) [Breiman, 1996] is
widely used, which can minimize variance and help avoid overfitting. Figure 1 is the schematic illustration
of how bagging is applied to decision trees.

Random forests (RF) [Breiman, 1996, 2001] is an enhanced decision tree model, which is based on the bag-
ging method to add an additional layer of randomness. As shown in Figure 1, in RF, the decision tree model
acts as the individual forecast model. A decision tree model is a hierarchical analysis diagram composed of
a collection of nodes and edges organized in a tree structure. There are two types of nodes in the decision
tree model, split (internal) nodes and leaf (terminal) nodes. Each split node is associated with a test function,
which is used to split the incoming data according to different attributes. Whereas, each leaf node corre-
sponds to the final decision (forecast or classification label). Decision tree model is nonparametric and

Figure 1. Schematic of the RF algorithm based on the Bagging (Bootstrap 1 Aggregating) method. (1) Stage 1: Use bootstrap method to sample M subsets from the original training
data sets. (2) Stage 2: Build M independent decision trees for model training using input covariates (v). For each individual decision tree, the prediction confidence (posterior probability
pðPd jv) increases from the root toward the leaves. (3) Stage 3: Obtain prediction from each bootstrap tree over M replications. (4) Stage 4: Decide the final result by average or majority
voting.
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therefore it is feasible to add either numeric or categorical data layers. What’s more, it is also not sensitive
to the outliers in the training stage [Hautaniemi et al., 2005]. However, the decision tree model can easily
overfit the training data set and therefore it may perform poor on the testing data. Compared to the stan-
dard decision tree model, which uses the whole data set and whose nodes are split on different attributes
among all variables, RF trains each individual tree on bootstrap resamples (M samples) of the total data set.
For each split on the node of the individual tree, it only considers Ntry randomly selected explanatory varia-
bles instead of the total explanatory variables (N). In this way, M decision trees are fitted and the final result
is decided by average or majority voting. The reason to use bootstrap method and random select the sub-
set of explanatory variables is to inject randomness into the RF such that the redundancy of explanatory
variables is reduced and the forecast models (decision trees) are diversified [Peters et al., 2007; Carlisle et al.,
2010; Criminisi et al., 2011]. The ensemble posterior is obtained by averaging M posteriors ptðPdjvÞ:

pðPdjvÞ5
1
M

XM

t51

ptðPdjvÞ (3)

where t51; 2; . . . ;M. ptðPdjvÞ is the leaf output for the t-th individual tree specifying the conditional distri-
bution of the downscaled precipitation (Pd) given the multidimensional feature response vector (v).

In this study, the RF algorithm is implemented in Python using the scikit-learn package [Pedregosa et al.,
2011], which comes with built-in functions to evaluate the importance of each covariate. This is done using
OOB (out-of-bag) samples (i.e., samples that are not chosen during the bootstrap split). The prediction
strength of each covariate can be measured using the following steps [Breiman, 2001; Liaw and Wiener,
2002; Friedman et al., 2001]: (1) Randomly permuting the value of the ith covariate in the OOB samples and
leaving other covariates unchanged; (2) Passing down the permuted OOB subsets to the jth tree and make
a new forecast; (3) Averaging the mean square error over all trees and measuring the importance of ith
covariate based on how much the prediction errors increase.

The two most important parameters in RF are Ntry and M. Ntry determines the variation among different
decision trees and M influences the extent of overfitting [Liaw and Wiener, 2002]. Typically, Ntry5

ffiffiffiffi
N
p

or log2

N (N is the number of covariates). Higher values of M are expected to yield better performance but will
require more computational resources. In practice, M can be determined through the OOB error.

3.3. Synthetic Experiment Design
The purpose of using synthetic experiments is to constrain errors and avoid uncertainties, which may come
from other sources, in order to test the performance of the Prec-DWARF algorithm before applying it to real
cases for which the downscaled precipitation values are unknown.
3.3.1. Generate Synthetic Covariates
The synthetic experiments are used to explore how well the algorithm works in downscaling synthetically
generated coarse-scale resolution precipitation. To achieve this, the observed NLDAS-2 precipitation at fine
resolution (0.125

�
) is upscaled to coarse resolution using the simple box averaging method. Then the

upscaled precipitation is disaggregated to the same resolution as the original observed precipitation using
the bilinear interpolation (or the uniform disaggregation) method to ensure that the dimensions of the
covariates and response variable are consistent (same grid number for latitude and longitude). Procedures
to prepare the synthetic covariates are shown in Figure 2. In addition to the central grid cell, precipitation at
adjacent grid cells is also included as covariates to maintain the large-scale spatial dependence of rainfall
structure as precipitation at ‘‘nearby’’ locations tend to be similar and therefore is more informative.

For consistency, dynamic atmospheric covariates are regridded in the same way as the precipitation, assum-
ing that in real-word applications these covariates would be available on the same coarse resolution as the
precipitation (e.g., from a GCM). As static covariates (e.g., topographic information) in NLDAS-2 are com-
monly available at the global scale from satellite observations at high-resolution, we keep their original res-
olution (0.1258) in NLDAS-2. Details about the covariates used in this study are summarized in Table 1.
3.3.2. Scaling Experiments
Scaling experiments are used to test the sensitivity of Prec-DWARF’s performance to different scaling ratios,
which are defined as the ratio between the coarse resolution and the target resolution (0.1258 in this study).
We are most interested in evaluating Prec-DWARF’s performance for high scaling ratios (e.g., from 18 to
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0.1258), which is typical of state-of-the-art GCMs and reanalysis data sets, although we expect the algorithm
to perform better for small downscaling ratios. Besides experiments using coarse resolution (0.258, 0.58 and 18)
precipitation and coarse resolution dynamic covariates, additional experiments are also tested by replacing
the atmospheric covariates at coarse resolution with the original fine-resolution versions (0.1258). We find
that only slight improvement in the downscaling performance is achieved in the experiments using high-
resolution atmospheric covariates (not shown).
3.3.3. Training and Testing of Random Forests
3.3.3.1. Notations
Let X be the location in the 3-dimensional (3-D) space, which comprises 2-dimensional (2-D) space and
time:

XðjÞ5½X1;j ; X2;j; . . . ; Xi;j; . . . ; XT ;j� (4)

where Xi;j 2 R2 is a regular Cartesian grid for time step i at location j, T is the total time step for the simula-
tion period. Downscaled precipitation at XðjÞ is denoted as PdðXðjÞÞ and covariates at XðjÞ are denoted as
vðXðjÞÞ:

vðXðjÞÞ5½PcðXm
ðjÞÞ; PcðXu

ðjÞÞ; PcðXd
ðjÞÞ; PcðXl

ðjÞÞ; PcðXr
ðjÞÞ; c1ðXðjÞÞ; c2ðXðjÞÞ; . . . ; ckðXðjÞÞ� (5)

Table 1. Summary of the Covariates Used for Downscaling Precipitation

Covariate Type Covariate Name Abbreviation Resolution

Atmospheric Precipitation in the target grid cell Prec (central) 0.258, 0.58, 18

Precipitation at adjacent grid cell (upward) Prec (up) 0.258, 0.58, 18

Precipitation at adjacent grid cell (downward) Prec (down) 0.258, 0.58, 18

Precipitation at adjacent grid cell (leftward) Prec (left) 0.258, 0.58, 18

Precipitation at adjacent grid cell (rightward) Prec (right) 0.258, 0.58, 18

Air temperature at 2 meters above the surface Temperature 0.2588, 0.58, 18

Specific humidity at 2 meters above the surface Humidity 0.258, 0.58, 18

Meridional wind at 10 meters above the surface Meridional wind 0.258, 0.58, 18

Zonal wind at 10 meters above the surface Zonal wind 0.258, 0.58, 18

Surface pressure Pressure 0.258, 0.58, 18

Convective available potential energy CAPE 0.258, 0.58, 18

Geographic Distance to the closest dry grid cells Distance 0.258, 0.58, 18

Mean value of elevation Elevation (mean) 0.1258

Standard deviation of elevation Elevation (std) 0.1258

Slope Slope 0.1258

Aspect Aspect 0.1258

Auxiliary Vegetation type Veg type 0.1258

Soil texture Texture 0.1258

Day of year DOY /
Latitude Lat /
Longitude Lon /

Figure 2. Procedures to prepare synthetic covariates. (a) Upscale the observed precipitation (Pobs) from fine resolution (0.1258) to coarse
resolution (Pup, e.g., 0.258) using the box averaging method. (b) Disaggregate precipitation from coarse resolution (Pup, 0.258) to fine resolu-
tion (Pc, 0.1258) again using the uniform disaggregating method as an example (bilinear interpolation is used in the study). Note that adja-
cent grid cells (green shaded) are also included as the input covariates.
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where ckðXðjÞÞ is the vector of individual covariates (except precipitation) at location XðjÞ and k51; . . . ;N25.
Again, N is the total number of covariates. Pcð�Þ represents precipitation at coarse resolution, superscript m;
u; d; l; r indicate the middle, upward, downward, left and right direction at location j.
3.3.3.2. Selection of Training Samples and Testing of RF
In machine-learning world, training (off-line phase) and testing (on-line phase) are two necessary steps to
verify the functionality of an algorithm. In particular, the performance of an algorithm can be very sensitive
to how the total data set is split into training and testing samples. To avoid this, K-fold cross validation is
usually conducted to properly represent the distribution of the population, especially when the total data
set is limited [Friedman et al., 2001]. However, conventional K-fold cross validation is usually applied either
in the spatial domain or in the temporal domain, and so cannot represent the spatial dependence and tem-
poral evolution at the same time when dealing with high-dimensional data samples. We therefore propose
a novel way to create 3-D space-time images by stacking the hourly 2-D images in time. Training data sets
can therefore be prepared through random sampling of the total T 3-D images using the following random
vector S:

S5½S1; S2; . . . ; Si; . . . ; ST � 2 Rntr 3T (6)

where ntr is the number of training grid cells and Si is the set of grid locations, which are randomly sampled
from the total grid cells at time step i. This sampling process implicitly considers the domain-averaged tem-
poral dependence as RF can learn the underlying structure at each time step and therefore the overall tem-
poral structure is expected to be maintained. The response variable (downscaled precipitation) and
covariates in the training samples can therefore be denoted as PdðSÞ and vðSÞ. We use RF to construct the
underlying relationship between PdðSÞ and vðSÞ from the training samples. Then the unselected pixels are
used as a test data set. After training and testing, the downscaled precipitation for the full spatial domain
can be reconstructed through the combination and rearrangement of the grid pixels. A schematic illustra-
tion of the Prec-DWARF algorithm is shown in Figure 3.
3.3.4. Single RF Versus Double RF
We find that the Prec-DWARF algorithm works well in downscaling the mean pattern of the precipitation
field. The problem with the above approach is that it uses only 10% of the whole spatial domain at each
time step. Because of the highly skewed distribution of rainfall rates, there is a high probability of picking
solely dry grid cells or low precipitation values (e.g., drizzle). The trained RF is therefore highly unlikely to be
representative of extreme precipitation. Taking this into consideration, we add a second RF specifically
designed to capture the relationship between the covariates and the target rainfall field for heavy and
extreme precipitation. This additional RF is used to train and test extreme precipitation events (precipitation
above the 99:95th percentile for all grid cells over the entire simulation period). The remaining grid cells,
which do not have heavy precipitation, are used to fit the other RF. As before, only 10% of the total grid
cells are used to train each RF. The other 90% is used as testing samples. To determine the number of deci-
sion trees for RF, we investigate how OOB errors vary with the number of decision trees (M) in the single RF
for different synthetic experiments over SEUS. As shown in Figure 4, there is no significant decrease of OOB
errors after 20 individual decision trees (similar results hold for the other three regions), which means add-
ing more trees is not necessary. Therefore, to optimize the computational efficiency and to produce stable
predictions, the number of decision trees is set to 50 for both RFs. In summary, six experiments are con-
ducted and their experimental configuration is listed in Table 2.

4. Results

4.1. Example of Spatial Distribution of Downscaled Fields
Prec-DWARF is used to downscale hourly precipitation for the six synthetic experiments (Table 2). We run the
algorithm with a single RF and double RF for the selected four climatic regions using the data described in
section 2. Here we only present results over SEUS as an example. Figure 5 shows a snapshot of observed pre-
cipitation, synthetic upscaled precipitation, and the downscaled precipitation. The original precipitation field
at 0.1258 (left, reference) shows a very localized pattern with a few spots of heavy precipitation surrounded by
moderate to low-intensity regions, typical for warm-season thunderstorms. The upscaled synthetic precipita-
tion captures the mean pattern and location of the reference data but cannot resolve the high-intensity cores
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and fine-scale variability. Using Prec-DWARF with a single RF (Figure 5, middle), the spatial features of down-
scaled precipitation can be well resolved, especially for the 0.258 experiment. Nevertheless, as the scaling ratio
increases (e.g., 0.58 and 18 experiments), the spatial structure of precipitation becomes noisier and patchier as
more low intensity precipitation is generated. The dry/wet transitions and spatial distribution of rainfall rates
within rainy regions are also not well reproduced. Moreover, both the location and magnitude of the extreme
precipitation are not properly resolved. This lost signal of extreme precipitation and the precipitation gradient
limits its hydrological application. The double RF model on the other hand (see Figure 5, bottom) performs
better, successfully resolving the location and magnitude of the heavy precipitation and clearly outperforms
the single RF at larger-scaling ratios (e.g., 18 experiment). In addition, it generates a more realistic area of low
intensity rainfall in the state of Alabama (see Figure 5, bottom right).

4.2. Overall Accuracy of the Prec-DWARF
In the following, a comprehensive evaluation of the algorithm’s performance over different regions is con-
ducted. Specifically, the bias, distribution, spatial/temporal dependence, dry-wet classification as well as the
uncertainty in the downscaled field are compared to the reference data. We also include the bilinear inter-
polation as the benchmark comparison.
4.2.1. Goodness-of-Fit Metrics
The overall agreement between the observed and downscaled precipitation is quantified using the root-
mean square error (RMSE) and correlation coefficient (R). These two metrics are calculated on an hourly
basis for the entire time period and for all land grid cells in the considered domains. Results for the four cli-
matic regions are summarized in Figure 6. As expected, as the spatial resolution of the upscaled precipita-
tion (Pup) gets coarser, the RMSE increases and R decreases. The smallest RMSE and highest R are obtained

Figure 3. Schematic illustration of the Prec-DWARF algorithm to partition the four-dimensional (2-D spatial structure 1 1-D time
evolution 1 1-D multiple covariates) data structure for training and testing purpose. Training samples are prepared by random sampling
10% of total grid cells at each time step for each covariate.
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in the 0.258 experiments. This is not
surprising as it is more difficult to dis-
aggregate one grid cell into 64 grid
cells (downscale from 18 to 0.1258)
compared to four grid cells (downscale
from 0.258 to 0.1258). But as indicated
by the R values, there is still good
agreement (>0.5) even for the 18

experiment. Comparison between the
single RF and double RF shows clear
evidence that the latter has superior
performance (reduced RMSE and
increased R). This improvement is
more apparent for the coarser resolu-
tion experiments (18) than 0.258 and
0.58 experiments, which further dem-
onstrates the necessity of using a dou-
ble RF. This significant improvement
comes from the fact that double RF
can better capture the magnitude and
spatial structure of extreme events,
which can reduce the bias and
increase the correlation. This is consis-
tent with previous findings of the spa-

tial pattern as shown in Figure 5. Compared with the benchmark experiments which use bilinear
interpolation for precipitation disaggregation, Prec-DWARF shows systematically lower RMSE and higher R
values for both single and double RF configuration over all climatic regions, demonstrating that our pro-
posed algorithm can well reduce the downscaling bias.
4.2.2. Precipitation Distribution
We further evaluate the downscaled precipitation in terms of the full distribution using Quantile-Quantile
(Q-Q) plots (Figure 7). Compared with the benchmark experiments, the downscaled precipitation from all
six synthetic experiments across all regions (except the 18 experiment with single RF over SWUS) corre-
spond much better to the observed distribution through most of the range, yielding data points very close
to the reference line. However, the downscaled precipitation underestimates the extreme values, and more
prominently for those results simulated using a single RF. In addition, the quantiles of the 18 experiments
are further from the 1:1 line, followed by 0.58 and 0.258 experiments. Prec-DWARF configured with double
RF shows superior performance compared to a single RF, especially for upper part of the distribution. This
improvement is more obvious in the coarse resolution experiments (e.g., 18). Moreover, the double RF also
increases the range/threshold, up to which the downscaled precipitation closely resembles the distribution
of the observations. For example, in the 18 experiment over SWUS (Figure 7a), the single RF starts to under-
estimate the observed precipitation above about 5 mm. For the double RF, the probabilities remain almost
identical up to 20 mm. We also observe regional differences in the performance of the downscaling algo-
rithm. For example, Prec-DWARF performs better in CUS, NEUS, and SEUS than SWUS. This is perhaps due to
the fact that the current algorithm does not handle the orographic effect very well, as in the southwestern

United States precipitation is highly influ-
enced by the Rocky Mountains. The poor per-
formance over SWUS could also be related to
the data quality of NLDAS-2, which affects
whether the actual statistical relationship
between the response and covariates can be
realistically reconstructed by the regressions.
4.2.3. Spatial and Temporal Dependence
The ability of the algorithm to reproduce the
spatial and temporal dependence structures

Figure 4. RF applied for different synthetic experiments with different resolutions
over SEUS. The curves represent the out-of-bag error as a function of the number
of decision trees in RF.

Table 2. Description of Synthetic Experiments

Experiment
Coarse

Resolution
Number

of RF
Scaling

Ratio

1RF 0.258 0.258 1 2
2RF 0.258 0.258 2 2
1RF 0.58 0.58 1 4
2RF 0.58 0.58 2 4
1RF 18 18 1 8
2RF 18 18 2 8
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is quantified by comparing the spatial and temporal semivariograms of the observed and downscaled pre-
cipitation fields. By definition, the empirical semivariance cs (the subscript ‘‘s’’ represents ‘‘spatial’’) can be
calculated as:

csðhsÞ5
1
2
h½Iðj1hsÞ2IðjÞ�2i (7)

where I(j) is the precipitation intensity at location j and hs 2 R2 is a displacement vector (spacing
between grid cells). The R library ‘‘gstat’’ [Pebesma, 2004] is used to calculate and model the semivar-
iance. Figure 8 shows the observed and downscaled spatial semivariance for different spatial resolutions
at one particular time step over SEUS. As expected, the spatial variability increases as a function of the
lagged distance. The shape of the variogram indicates that most of the spatial correlation is lost after 15
lags (one lag corresponds to 0.1258). However, for the downscaled precipitation, this decorrelation dis-
tance (or range) is larger (around 25 lags), which is a sign that the algorithm fails to reproduce the local-
ized spatial structure and instead tends to generate a less variable and smoother pattern. As expected,
the discrepancy between observed and downscaled semivariance values increases with increasing scal-
ing ratio. Overall, the 0.258 experiment yields the best results, but still underestimates the small-scale
spatial variability.

A useful quantity to look at when evaluating the small-scale spatial structure of the precipitation fields is
the spatial semivariance value at lag 1 (denoted as csð1Þ, pentagon symbol in Figure 8), as this value
shows (half of) the average squared difference in rainfall intensity for two neighboring grid cells. Spatial
semivariance values at larger distance lags are also interesting, but mostly constrained by the data at
the coarse resolution and hence not very relevant for assessing the spatial structure of the downscaled
fields. Therefore, only csð1Þ will be considered in the following. Figure 9 shows the temporal evolution of
csð1Þ over 200 h for different spatial resolutions (0.258, 0.58, and 18) and different RF configurations

Figure 5. (left column) Example of the spatial distribution of NLDAS-2 observed precipitation at 0.1258, (top) synthetic upscaled precipita-
tion, (middle) downscaled precipitation using a single RF, and (bottom) downscaled precipitation using a double RF for different scaling
ratios over the SEUS region at 22:00 on 11 July 2011.
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(single RF or double RF). Results are compared with benchmark experiments. There is a clear diurnal
cycle of csð1Þ in this time period, which is associated with the strong diurnal cycle of precipitation in the
summer time over SEUS (Figure 9a). As can be seen, the benchmark experiments significantly underesti-
mate the observed semivariance and fail to capture its temporal dynamics for all resolutions. In contrast,
Prec-DWARF is able to capture the temporal dynamics of the spatial semivariance at lag 1 relatively well.
With higher scaling ratios, the deviation between the downscaled and the observed csð1Þ increases, indi-
cating that the downscaled precipitation in the 18 experiments tends to have a more homogeneous spa-
tial pattern. However, the use of a double RF improves the representation of observed spatial variability
compared to the single RF, especially for the 18 experiment. This further demonstrates the advantage of
using a double RF rather than a single RF. Figure 10 summarizes the comparison between the observed
csð1Þ and the downscaled csð1Þ in the spatial domain for all time steps and for all regions. The bench-
mark exhibits the strongest deviations from the 1:1 line, indicating its poor performance in capturing the
spatial variability at subgrid scale. Prec-DWARF does a better job than bilinear interpolation, even
though the downscaled spatial semivariance is still underestimated, especially during times of heavy
rain rates and large spatial variability. In addition, the double RF (green colors) appears to be much bet-
ter at reproducing the observed lag-1 semivariance during periods of heavy rain rates than the single RF
(red colors).

Figure 6. (left axis) Root-mean-square-error (RMSE, unit: mm) and (right axis) correlation coefficient (R) showing how Prec-DWARF’s down-
scaling performance (goodness-of-fit) varies with the spatial resolution over (a) SWUS, (b) CUS, (c) NEUS, and (d) SEUS. Gray, red, and green
symbols represent results for benchmark, single RF, and double RF experiments.
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Although this study does not focus on the temporal downscaling, we argue that Prec-DWARF can capture
the temporal dependence of the observed precipitation to some extent due to the embedded sampling
algorithm. To confirm this, we computed the temporal semivariance ct for the observed and downscaled
precipitation time series (at each grid cell):

ctðhtÞ5
1
2
h½Iðt1htÞ2IðtÞ�2i (8)

This is similar to equation (7), but here t is the time step and ht specifies the interval between time steps.
ctð1Þ corresponds to (half of) the average squared difference between rainfall intensities (at a fixed loca-
tion) separated by a time difference of 1 h. ctð1Þ is normalized by the total variance of the whole time
series at each grid cell to make the magnitude comparable among different experiments. The percentage
describing the relative overestimation of downscaled semivariance to the observed semivariance can be

Figure 7. Quantile-Quantile (Q-Q) plot showing the relationship between the observed and downscaled precipitation over (a) SWUS, (b)
CUS, (c) NEUS, and (d) SEUS.
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expressed as: d5
gct;simð1Þgct;obsð1Þ

21, where

gct;simð1Þ and gct;obsð1Þ are the normal-

ized temporal semivariance at lag 1
for downscaled and observed precipi-
tation separately. Positive/negative
values of d indicate that the algo-
rithm overestimates/underestimates
the temporal variability. Figure 11
shows that all nine experiments under-
estimate the observed lag-1 semivar-
iance at most grid cells and the
underestimation gets worse with
increasing scaling ratio. The overall
underestimation for benchmark experi-
ments is 46.27%, 62.76%, and 76.71%
for the 0.258, 0.58, and 18 experiments.
For single RF, these values reduce to
26.10%, 42.51%, and 60.74%. The dou-
ble RF slightly performed better with
underestimation of 24.37%, 38.53%,
and 56.20%. Moreover, the double RF
experiments (Figure 11, bottom) show
a similar spatial distribution compared

to that in the single RF experiments (Figure 11, middle). The underestimated temporal variability at the hour-
ly time scale is not surprising and can be explained by the algorithm’s tendency to underestimate the spatial
variability of the precipitation.
4.2.4. Dry-Wet Classification
The algorithm’s ability to reproduce precipitation occurrences (i.e., dry and wet periods) at an hourly timescale
is investigated using receiver operating characteristic (ROC) curves [Mason and Graham, 1999]. ROC curves

Figure 8. Empirical and fitted exponential variogram models for observed and
downscaled precipitation with different coarse resolutions over the SEUS region.
The pentagon symbol represents semivariance at lag 1.

Figure 9. Temporal evolution of (a) domain-averaged NLDAS-2 precipitation and the spatial semivariance at lag 1 (pentagon symbol in Figure 8) for observed (black line) and down-
scaled precipitation using bilinear interpolation (gray line), a single RF (red line), and double RF (green line) for (b) 0.258, (c) 0.58, and (d) 18 experiments over SEUS.
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show the relationship between the false positive ratio (fpr, x axis) and the true positive ratio (tpr, y axis). In our
case, fpr represents the fraction of downscaled pixels that were classified as wet but were actually dry in the
observations. tpr gives the fraction of downscaled pixels that were correctly classified as wet. Low fpr indicates
a low false alarm ratio and high tpr indicates a high number of correct predictions of precipitation occurrence.
In an ROC curve, different fpr/tpr pairs are plotted for different thresholds. A point located in the upper left cor-
ner (fpr 5 0 and tpr 5 1) indicates a perfect prediction. From Figure 12, we can see that Prec-DWARF does a
better job than bilinear interpolation method in terms of the dry-wet classification for all climatic regions, as
the ROC curves lie toward the upper left corner. The slopes of ROC curves over SWUS, CUS, and NEUS are
steeper than those over SEUS, indicating that the algorithm does better in these three regions. For each climat-
ic region, the slope of the ROC curve decreases with lower resolution. In other words, the tpr decreases and the
fpr increases at lower resolution, meaning that the number of correctly downscaled precipitation occurrence is
reduced and the false alarm ratio is increased. Again, the double RF beats the single RF, this time in terms of
dry-wet classification and this improvement is most distinct over SEUS for the 18 experiments.
4.2.5. Uncertainty Analysis
As RF is an ensemble-based method that consists of multiple decision trees, it can also be used to quantify the
uncertainty associated with the downscaled precipitation values. The uncertainty in the downscaled precipita-
tion can be represented by the ensemble spread. Figure 13 compares the domain-averaged observed precipi-
tation to the downscaled precipitation with a single RF (top) and double RF (bottom) for different resolutions.
The temporal variability of the downscaled mean value, which is averaged over 50 decision trees, is in good
agreement with that of the observations for the 0.258 experiments, both for the single and double RF. As the

Figure 10. Scatterplot of semivariance at lag 1 between observed precipitation and downscaled precipitation over (a) SWUS, (b) CUS, (c)
NEUS, and (d) SEUS.
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resolution becomes coarser (e.g., 18 experiments), the ensemble mean deviates more from the observations.
Regardless of the number of RFs, the 0.258 experiments have the smallest ensemble spread, whereas the 18

experiments have the largest. Compared with the single RF, the double RF yields a larger ensemble spread,
especially during heavy precipitation events. This makes sense, as extreme rainfall events are often associated
with larger spatial and temporal variability and tend to be harder to downscale. The double RF has separate
settings for moderate and extreme precipitation and is able to better account for this effect.

4.3. Relative Importance of Individual Covariates
As noted earlier, the predictability of each covariate in Prec-DWARF can be assessed through the covariate
importance plot, as shown in Figure 14. Here we show the relative feature importance for all the 21 covariates
for single RF and double RF over SEUS. For the double RF, we explicitly output the feature importance for mod-
erate precipitation and extreme precipitation. Precipitation in the central grid (PcðXm

ðjÞÞ) is the most important
covariate, followed by precipitation at adjacent grid cells. For the single RF, the relative importance of PcðXm

ðjÞÞ
is larger than 0.8 in the 0.258 experiment. Although this value decreases quickly in the 0.58 and 18 experiments,
PcðXm

ðjÞÞ is still the most important among all the covariates. The ranking is similar as the double RF for moder-
ate precipitation (Figure 14, middle). However, significant differences emerge when RF is applied to downscale
the extreme precipitation (Figure 14, right). Once again, PcðXm

ðjÞÞ has the strongest predictive power for the
0.258 experiment, but its relative importance reduces to less than 0.4. Other covariates start to play a more
important role, especially precipitation at adjacent grid cells and atmospheric covariates. For example, the rela-
tive importance of temperature is more than 0.15, ranking third in the 0.258 experiment. This strong influence

Figure 11. Spatial distribution of d describing the relative underestimation of the observed temporal semivariance for the (top) bench-
mark, (middle) single RF, and (bottom) double RF experiments with different scaling ratios over SEUS. Grid cells containing less than 100
pairs of positive precipitation in the time series are masked out when calculating ctð1Þ to avoid unreliable semivariable estimates.
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of temperature for extreme precipitation downscaling can be explained by the Clausius-Claperon (CC) super-
scaling [Lenderink and Van Meijgaard, 2008; Haerter et al., 2010; Utsumi et al., 2011], which predicts that extreme
precipitation intensity increases with temperature beyond the standard CC rate. A recent study by Berg et al.
[2013] demonstrates that this CC superscaling can be more dominant for convective precipitation, which is
consistent with our experiment (such as thunderstorms over SEUS). Besides temperature, other atmospheric
covariates also contribute more when used to downscale extreme precipitation. The covariate for distance to
the closest dry grid cell ranks even higher than precipitation in the 0.58 and 18 experiments, demonstrating the
strong relationship between the precipitation intensity and the area, size, and shape of the wet regions. Includ-
ing the ‘‘dry drift’’ seems to be particularly valuable for predicting extreme precipitation. Topographic covariates
had relatively low importance here. This may be because the regions are large or that the orographic depen-
dence may be missing in the NLDAS-2 data [Pan et al., 2003]. Here we only show the covariate importance
spectrum over SEUS, but the findings are similar for the other three regions.

5. Summary and Discussion

5.1. Summary
A novel machine-learning algorithm, Prec-DWARF (Precipitation Downscaling With Adaptable Random For-
ests) for spatial precipitation downscaling has been proposed. Two different implementations are

Figure 12. Receiver operating characteristic (ROC) curve for benchmark, single RF, and double RF experiments over (a) SWUS, (b) CUS, (c)
NEUS, and (d) SEUS.
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considered: a single RF for low to moderate precipitation values and a double RF for more localized and
intense rainfall. Synthetic experiments over four climatic regions in the United States and three different
scaling ratios are conducted to assess the performance of the algorithm based on the NLDAS-2 data sets.
We present a comprehensive analysis to assess Prec-DWARF’s downscaling performance in terms of the
spatial and temporal patterns, the overall goodness-of-fit (bias and correlation), distribution, spatial and
temporal dependence, wet-dry classification, and the associated uncertainty in the downscaled field. The
results demonstrate that Prec-DWARF successfully reproduces the geometrical and statistical characteristics
of the NLDAS-2 precipitation, especially for experiments with lower scaling ratios. The double RF consistent-
ly performs better than the single RF and the improvement is most significant for experiments with higher
scaling ratios. However, the algorithm consistently underestimates the spatial variability and temporal

Figure 14. Covariate importance spectrum for (left) the single RF, (middle) double RF for moderate precipitation, and (right) extreme pre-
cipitation with different spatial resolutions (0.258, 0.58, and 18) over SEUS. Feature importance (x axis) is calculated based on the Gini split-
ting index.

Figure 13. Temporal evolution of the domain averaged precipitation calculated from (top) a single RF and (bottom) a double RF using the
ensemble mean (solid line) of 50 decision trees. Shadings with different colors represent the uncertainty spread at different resolutions.
The observed precipitation is represented by the black line.
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dependence (as represented by the semi-variance) and frequency of very high rainfall rates (especially over
SWUS). In addition, the algorithm overestimates the amount and spatial extent of low intensity rainfall (e.g.,
drizzle). The poor performance of Prec-DWARF in these aspects can be attributed both to methodological
limitations and the difficulty to define adequate covariates for describing and predicting small-scale precipi-
tation variability. Despite the overall promising performance, the following issues need to be addressed.

5.2. Scaling Issues
The current study only focuses on precipitation downscaling in the spatial domain. We do not vary the tem-
poral resolution, but instead only test the performance of Prec-DWARF at hourly scale. Nevertheless, Prec-
DWARF is flexible enough to be extended to other temporal resolutions as well. In future studies, it will be
important to assess the overall performance of the algorithm for different temporal and space-time scaling
ratios. Additional efforts are also needed to determine the performance of the algorithm not only with
respect to the scaling ratio but also to the actual spatial scale at which the precipitation is considered. For
example, downscaling precipitation from 10 to 2.5 km might be more difficult than to downscale from 100
to 25 km, even though the scaling ratio is identical.

5.3. NLDAS-2 Data and Orographic Precipitation
Data availability and quality play a key role in the machine-learning approach. The constructed relationship
highly depends on how representative the training samples are. For precipitation downscaling, how well
the training samples represent the full spatial-temporal domain and capture the unique properties of pre-
cipitation (highly skewed, intermittent, and spatially correlated) determine how well the algorithm can be
used for testing samples. The evaluation of the algorithm also depends on the quality of the data, which in
the case of the NLDAS-2 is subject to how the radar and gauge observations are blended, and the spatio-
temporal sampling of the rain gauges. In the dry SWUS, due to the scarcity of rain gauges, NLDAS-2 itself
may not represent extreme events well [Guirguis and Avissar, 2008; Abatzoglou, 2013]. This may partially
explain the poor performance of Prec-DWARF over SWUS, as shown in the Q-Q plot (Figure 7a). The under-
estimation of precipitation in the NLDAS-2 at higher elevations has been noted previously [Pan et al., 2003]
and may contribute to the low importance of elevation as a covariate. Pan et al. [2003] found that over the
western mountains of the United States, the lack of high elevation gauges in the NLDAS precipitation analy-
sis was the main reason for the underestimation of orographic precipitation.

5.4. Number of RF and Stratified Sampling
In this study, we create a novel subsampling approach to explore the 4-D space (2-D spatial structure 1 1-D
time evolution 1 1-D multiple covariates). We also explicitly sample extreme precipitation and use an addi-
tional RF to downscale that part of the data. Despite the relatively good results, the current subsampling
method explores the whole spatial domain to extract the training grid cells, but could be improved by sam-
pling preferentially from wet grid cells. In terms of the number of RF, more RF can be used, which will
increase the likelihood of maintaining the spatial-temporal dependence as well as reproducing the extreme
values, but it also increases the algorithm’s complexity as more parameters are needed and it also puts
higher requirements on data availability. A single RF would however be preferable, which is more cost-
effective for tuning parameters, training, and testing compared to multiple RFs. To use a single RF, the cur-
rent algorithm could be altered by explicitly sampling the full statistical distribution of rainfall intensity
(including its tail). Meanwhile, we also need a better understanding of different physical mechanisms
through which precipitation can be formed. The covariates used in this study may be insufficient to distin-
guish between these different regimes. Moreover, there appears to be a trade-off between the number of
covariates, their resolution, and the number of RF needed to predict the precipitation at small scales. Per-
haps the only way to achieve better performance using a single RF would be to have access to better or
more covariates (see next section).

5.5. Potential Physical and Statistical Covariates
Other physical covariates can be taken into account for further study based on the precipitation type and
associated physical processes. For example, optical and microphysical cloud parameters are very useful to
distinguish convective and stratiform precipitation. Variables related to vertical cloud base profiles (e.g.,
cloud-top temperature, cloud fraction) could be utilized from multiple satellite imagery. The distance to the
coast can be added to the set of covariates, as precipitation may be influenced by strong land-sea
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interaction. Aerosols related to the degree of urbanization may also be useful over urban areas. There is
also the possibility to combine different covariates in a nonlinear way, e.g., by multiplying them.

Besides these physical covariates, statistical covariates derived from rainfall characteristics themselves may
also provide valuable information similarly to the ‘‘dry drift.’’ For example, to better downscale extreme
events, we can add covariates from the frequency domain (wavelet) to Prec-DWARF, which may help to
reproduce their intensity and gradient at multiple scales. This has great potential and flexibility to recon-
struct high-frequency signals and their fluctuations, which are lost or smoothed out when regression-based
methods are used [Kumar and Foufoula-Georgiou, 1993; Ebtehaj et al., 2012; Foufoula-Georgiou et al., 2014].
To implement Prec-DWARF for temporal downscaling, the temporal innovation and predictability at differ-
ent time lags need to be considered.

5.6. Transferability of the Method
The general flexibility of Prec-DWARF that derives from a machine-learning approach enables its application
to a variety of situations and data sets. The techniques and ideas described in this paper are relevant for
many downscaling algorithms and can be adapted to other situations. For example, the algorithm can be
trained on point observations (rain gauges), and be used to downscale different gridded data sets (e.g., sat-
ellite, reanalysis, or coupled model output). However, the applicability of the algorithm to downscaling cli-
mate output depends on whether the observation-based relationships between the large-scale and small-
scale variables still hold in the model-based data sets. Prec-DWARF can also be adapted to different types
of precipitation (convective, stratiform, and orographic precipitation) considering different mechanisms
that produce precipitation, perhaps based on weather-type classification. Multivariate (e.g., precipitation
and temperature) downscaling can also be performed to better constrain their physical relationships. The
proposed algorithm can also be used for real-time downscaling. In that case, the training procedure should
be slightly modified. Ideally, one would like to train the algorithm using all the available historical data to
maximize the learning ability. However, this might not be feasible due to computational constraints. There-
fore, it might only be possible to train the algorithm periodically instead of at each time step.

One key application of the method is to downscale coarse resolution satellite or model data in regions with-
out high-resolution observations, such as in most parts of Africa. A possible approach would be to train the
model in the United States, where high-quality data are available (e.g., Stage IV data sets at 4 km), and apply
it to other regions at similar resolution. This depends on how well the statistical relationships between cova-
riates and fine-scale precipitation transfer to another location and so presumably depends on selecting
training data from a climatically similar region. The algorithm could also be applied to downscale precipita-
tion at the continental or global scale, using techniques such as moving window approach and massive par-
allel computing to overcome the large computational cost of such a task.
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